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The Impact of Compounding Item Parameter Drift on Ability Estimation 
 

According to the invariance property of item response theory (IRT), item parameter values 

should be the same for all samples from a population.  In practice, however, it is not always 

possible to satisfy the invariance property.  Research has found that item parameters may be 

different for subgroups of examinees and across testing occasions.  Change in parameter values 

for different subgroups is called differential item functioning (DIF; Holland & Wainer, 1993; 

Pine, 1977); change across time is called item parameter drift (IPD; Bock, Muraki, & 

Pfeiffenberger, 1988; Goldstein, 1983).   

The literature on DIF is extensive.  Throughout the 1990s, nearly two-thirds of the issues of 

Journal of Educational Measurement included at least one article pertaining to DIF.  In contrast, 

the literature on IPD is quite small.  One reason for this may be that the few studies that have 

been published have largely suggested that IPD is not as big a problem as the theory might lead 

one to believe.  By and large, research on IPD has found that naturally occurring amounts and 

magnitudes of drift tend to have a very minor impact on the resulting ability scores.  Wells, 

Subkoviak, and Serlin (2002) found that even when item discrimination (a) and item difficulty 

(b) parameters were increased by .5 and .4, respectively, for 20% of the items, item ability (θ) 

estimates were expected to deviate on the two tests by no more than 0.14 logits, for any true θ 

value.  Similarly, Rupp and Zumbo (2003a, 2003b) found that examinees’ scores were changed 

only slightly, unless the amount of simulated IPD was unusually large.   

That IRT ability parameter estimation appears robust to even substantial amounts of IPD is 

of tremendous comfort to test developers who are charged with the task of equating forms from 

separate administrations and maintaining the test’s score scale over time.  Yet, the fact that 



  The Impact of Compounding Drift 3

having a subset of items with considerably different item parameter estimates for two timepoints 

still results in reasonably similar ability estimates remains counterintuitive.    

In both Wells et al. (2002) and Rupp and Zumbo (2003a, 2003b), the impact of IPD was 

studied across two occasions.  Yet, in practice, IPD is a phenomenon that has typically been 

examined (and is most relevant when considered) over multiple testing occasions.  Bock et al. 

(1988) studied IPD over a 10-year period on the College Board English and Physics 

Achievement Tests.  Chan, Drasgow, and Sawin (1999) studied IPD over a 16-year period on the 

Armed Services Vocational Aptitude Battery.  Veerkamp and Glas (2000) modeled the effects of 

item over-exposure within computerized adaptive testing by analyzing changes in item difficulty 

parameters across 25 simulated intervals within a testing window.  Recently, DeMars (2004a, 

2004b) examined patterns of IPD over four years on one test of U.S. History and political science 

and a second test of information literacy.  And Wollack, Sung, and Kang (2005) looked for 

effects of IPD over six years on a college-level German placement test. 

Therefore, for test developers to be comfortable employing methods that largely ignore 

any potential IPD, it must first be demonstrated that IRT ability estimation is robust to IPD over 

a multiple-year period.  One concern is that the item drift problem may compound over time, as 

the number of drifting items and the magnitude of drift increases, particularly if drifting items are 

included in the linking of test forms (Kim & Cohen, 1992; Lautenschlager & Park, 1988; 

Shepard, Camilli, & Williams, 1984).  In this study, we used both simulated data and data from a 

college-level test of information literacy to examine the effect of compounding IPD on a score 

scale over a multiple-year period.  The impact of IPD on examinee ability and on item 

parameters was studied under eight different IRT linking designs.   
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Simulated Data Analysis 

Data Source 

The design for the simulated datasets is shown in Figure 1.  In this study, we simulated a 

testing program that, each year, administers an alternate form of a 60-item test.  In addition to the 

set of scored items, a set of 10 pilot items was simulated for each of the first four years.  Each 

new form consisted of a randomly sampled 50 items from the preceding year’s operation items, 

plus all 10 of the items that were pilot tested on the preceding form.  Therefore, forms were 

designed so that each new form consisted entirely of items that were administered the previous 

year.  In this way, five forms were constructed, resulting in the simulation of 100 items.  Thirty-

five of the 100 items appeared on all five test administrations; twenty-nine items were 

operational in all five years. 

    

  Insert Figure 1 About Here  
    

Item parameters from the three-parameter logistic model (3PLM) were generated randomly 

for the 100 items from the following distributions: 

 α ~ Lognormal (0, 1) 

 β ~ Normal (0, 1) 

 γ ~ Logit normal(-1.4, 0.3). 

These generating item parameters defined the base scale.   

Simulation of IPD.  Both compounding IPD (CIPD) and random IPD (RIPD) were 

simulated.  The CIPD condition modeled situations where the item difficulty for some items 

changes systematically over time, as might be the case when curriculum is changing or when 

items have been over-exposed.  CIPD was simulated by adding a constant δ to the item difficulty 
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parameter from the preceding year each time the item drifted, and 0.0 to the preceding item 

difficulty each time the item did not drift.  For example, under CIPD, an item i that drifted each 

of the first two years before stabilizing in the fourth and fifth years was simulated with its base 

value, bi, for year 1 (Y1), bi + δ for year 2 (Y2), and bi + 2δ for years 3 (Y3), 4 (Y4), and 5 (Y5).   

RIPD was intended to model situations where certain items occasionally function 

differently in a particular year, though their long range difficulty estimates remain unchanged 

from their base values.  Items selected to exhibit RIPD were simulated with difficulties equal to 

bi + δ for that particular year only.  In years where RIPD was not simulated for an item, the 

generating difficulty value was fixed at bi.  To illustrate, an item showing the same drifting 

pattern as above, only with RIPD—drifting in Y2 and Y3, but not in Y4 and Y5—would have 

been simulated with difficulty values equal to bi for Y1, bi + δ for Y2 and Y3, and bi for Y4 and 

Y5.   

Ten items exhibiting CIPD were randomly selected from the 35 items appearing on all five 

forms.  Three of these items were simulated to drift four times (i.e., in each of years 2, 3, 4, and 

5); four items drifted three times, and three items drifted twice.  In addition, each year had 10 

RIPD items, which were randomly selected from the 50 items not already chosen to have CIPD.  

Therefore, on any given form, approximately one-third of the items were simulated as drifting 

from the base scale. 

By manipulating δ, it was possible to study the effect of different magnitudes of IPD on 

item and ability parameter estimation.  Both moderate and large values of δ were used.  In one 

condition, δ was fixed at 0.25, simulating a moderate amount of IPD.  In the large IPD condition, 

δ was equal 0.40.  This is the same magnitude of IPD used by Wells et al. (2002) and by 
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Donoghue and Isham (1998).  Although all items were modeled with the 3PLM, ai and pseudo-

guessing (ci) parameters were simulated to remain invariant across testing occasions.   

All IPD in this study was simulated by adding a positive constant to the item difficulty 

parameters.  Clearly, this is an oversimplification of how IPD actually occurs in practice, but was 

selected because it represents a worst-case-scenario for item and ability parameter estimation.  

Similar techniques have previously been used to study the effects of IPD (e.g., Wells et al., 

2002). 

Simulation of item responses.  Item response vectors were simulated for 1,000 examinees in each 

of the five years.  θ values for year y were randomly drawn from a Normal (∆( y − 1), 1) 

distribution, where ∆ = 0 or 0.15, and y equaled 1, 2, 3, 4, or 5.  Therefore, θ was generated 

under two separate ability trend conditions.  When ∆ = 0, examinee θ parameters were sampled 

randomly from independent Normal (0, 1) distributions for all y.  When ∆ = 0.15, however, a 

linear trend in ability was simulated, with each year becoming 0.15 logits higher in ability.  

Under this condition, therefore, Y1 θs were generated from a Normal (0, 1) distribution, but Y5 

θs were generated from a Normal (0.6, 1) distribution.   

The magnitude of IPD (δ = 0.25 or δ = 0.40) was crossed with the ability trend (∆ = 0.0 or  

∆ = 0.15), to create four experimental conditions.  Five replications of each condition were 

performed. 

Methods 

Data from Y1 were used to calibrate item parameters under the 3PLM, using the computer 

program MULTILOG 7.0 for Windows (Thissen, 2003).  To improve the quality of item 

parameter recovery, the following priors were placed on the item parameter values, as per the 

recommendations of Orlando and Thissen (2000): 
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a ~ N(1.9,1) 

b ~ N(0,1.5) 

c ~ logit normal(-1.1, 0.5). 

In addition, the maximum number of EM cycles was set at 1,000 to improve the chances of the 

solution converging.  Default values were used for all remaining settings. 

Linking Techniques.  Test forms were linked using one of two methods: the fixed item 

parameters method and the test characteristic curve (TCC; Stocking & Lord, 1983) method.   

When linking using fixed item parameters, parameters for all operational items are 

constrained to equal their scale values, based on a previous administration.  Parameters for any 

items that have not been previously administered, i.e., pilot items, are freely estimated.   

When linking using the TCC method, parameters for all years are independently estimated.  

Estimates for each new year are placed onto the Y1 metric by transforming the parameter 

estimates from the new year, such that a* = a/A, b*=Ab + K, and θ̂ * = Aθ̂  + K, so as to 

minimize the difference between the Y1 TCC and that based on the newly transformed parameter 

estimates.  Note that the estimation of the A and K coefficients is done using a subset of the 

items referred to as the anchor items.  At a minimum, these items must be common to the two 

forms being linked, but may also possess other desirable properties, such as being representative 

of the test blueprint or being free from DIF or IPD.  Items not included in the linking set are not 

used to estimate A and K, but are still transformed to the base metric after A and K have been 

determined.  The computer program EQUATE (Baker, 1990) was used to estimate the A and K 

coefficients for the TCC method. 

Linking Methods.  When applying the two linking techniques above, new forms may be 

linked directly to the original Y1 metric through the common items, or indirectly to the Y1 
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metric by linking to the immediately preceding form (which was linked to its predecessor, and so 

on back to the Y1 metric).  An illustration of the distinction between the two types of linking is 

provided in Figure 2, for a hypothetical three-year period. 

    

  Insert Figure 2 About Here  
    

Direct linking is advantageous because it minimizes linking error between forms and links 

directly to the scale of interest.  However, there are potential problems with directly linking over 

multiple years, as is illustrated in Table 1.  Table 1 shows a hypothetical testing program which 

administers a different form of the test each year over a five year period.  In this example, each 

form contains 10 operational items (numbered 1-10) and four pilot items (numbered 11-14).  

Given the design in Table 1, indirect linking will always involve 10 items because all operational 

items were selected from the previous form.  With direct linking, however, the number of items 

available (shown in boldface type in Table 1) decreases with each new form.  For example, a 

direct linking between Forms 1 and 5 would involve only three items.  Therefore, a  testing 

program that uses direct linking will need to make a concerted effort to retain an adequate 

number of items from the base year in each subsequent form, but doing so may lead to IPD 

problems due to over-exposure.  Therefore, while direct linking minimizes linking error between 

forms by linking directly to the scale of interest, indirect linking will result in more items on 

which to link.  Indirect linking may also be attractive because adjacent forms are expected to be 

more similar with regard to the behavior of individual items.   

    

  Insert Table 1 About Here  
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Treatment of Drift Items.  Including into the linking process items that exhibit IPD may be 

problematic (Kim & Cohen, 1992; Lautenschlager & Park, 1988; Shepard, Camilli, & Williams, 

1984).  Therefore, linking methods were examined both under conditions where items were not 

tested for IPD, and conditions where items were first tested for IPD using the likelihood ratio 

(LR) test for differential item functioning (DIF; Thissen, Steinberg, and Gerrard, 1986; Thissen, 

Steinberg, & Wainer, 1988, 1993) with concurrent calibration.  Although only item difficulty 

coefficients were manipulated to simulate IPD, it is conceivable that simulated difficulty drift 

manifests itself in changes in item discrimination or pseudo-guessing estimates.  Therefore, 

augmented models allowed all three parameters for the tested item to be freely estimated.  Items 

with LR χ2 values that were greater than or equal to χ2
3,.95 = 7.82 were treated as drifting.  Any 

items found to have drifted were not included among the linking set, but instead had their 

parameter values re-estimated.  In conditions where items were not tested first for IPD, linking 

was based on all common items between the two years. 

Models.  Eight different models were used to link subsequent forms to the Y1 metric.  The 

different models varied with respect to linking technique (Fixed vs. TCC), linking method 

(Direct vs. Indirect), and the way in which drifting items were treated (IPD Testing vs. No IPD 

Testing).  A summary of these models is provided in Table 2. 

    

  Insert Table 2 About Here  
    

Outcome Measures.  To investigate the impact of IPD and the linking model on ability 

estimation, Y5 scale means, standard deviations, biases, and root mean squared errors (RMSE) 

for each of the eight models were compared.  In addition, the same outcome variables were 

assessed for Y5 item parameters.   
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Results 

Ability estimation.  Sample θ̂  means under the eight models for Y5, after being linked to 

the Y1 scale, are given in Table 3, averaged over the five replications.  The first column presents 

the generating mean θ value for Y5, averaged across replications.  Table 4 presents Y5 sample 

pooled standard deviations for the eight models, pooled over the five replications.  Again, the 

pooled standard deviation among generating values is presented in the first column.  Means and 

standard deviations are reported separately for the four ability trend (∆ = 0.0 or ∆ = 0.15) x 

magnitude of drift (δ = 0.25 or δ = 0.40) conditions. 

    

  Insert Tables 3-4 About Here  
    

Several patterns are clear from Tables 3 and 4.  For all models, the true Y5 mean and 

standard deviation were underestimated.  For the means, the amount of underestimation tended 

to increase as ∆ and δ increased.  The standard deviation estimates, however, were quite stable 

across the four different conditions.  Finally, by examining the final column in Table 3, which 

presents the standard deviation among the average θ̂  for the eight linking models, it is clear that 

the between-model differences in average θ̂  increased as ∆ and δ increased.  The standard 

deviation among the models in Condition 4 was more than twice as large as the standard 

deviation in Condition 1.  There was no noticeable difference between conditions with respect to 

between model standard deviations of θ̂ . 

Average correlations between θ and θ̂  were either 0.93 or 0.94 for all models and all 

conditions.  Furthermore, inter-model θ̂  correlations were 1.0 between all pairs of models.  That 
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all models were a linear transformation away from being virtually identical suggests that all 

differences between the models were attributable to differences in the linking procedures. 

Average biases and RMSEs are presented Tables 5 and 6, respectively.  Data in part (a) of 

the table report on the four different generating conditions, whereas data in parts (b) and (c) 

show the two main effects, magnitude of drift and ability trend, respectively. 

    

  Insert Tables 5-6 About Here  
    

The data from Table 5a mirror the results of Table 3:  all models showed some negative 

bias and the amount of bias increased as ∆ and δ increased.  What is also evident from Table 5a 

is that the amount of bias varied considerably as a function of model choice and condition.  Bias 

ranged from as little as -0.04 for Model 5 in Conditions 1 and 2 to as high as -0.52 for Model 2 in 

Condition 4.  Overall, the average bias was nearly three times greater in Condition 4 (-0.31) than 

in the Condition 1 (-0.11).   

Table 6a also revealed differences in terms of RMSE, though the differences were 

generally less pronounced.  Average RMSEs were higher for Condition 4 than for Conditions 1-

3.  However, 26 of the 32 RMSE values were between 0.38 and 0.46, indicating that the order of 

magnitude was similar for most values. 

From Tables 5b and 6b, one can see that the magnitude of IPD had a moderate effect on 

bias, but very little effect on RMSE.  In general, the amount of negative bias increased as the 

magnitude of IPD increased.  Bias and RMSE were lower in Models 5-8 than in Models 1-4.  

This result is not surprising, since IPD testing was incorporated into Models 5-8, but not in 

Models 1-4.  Bias and RMSE were smallest for Model 7, regardless of the amount of IPD.   
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Table 5c shows a large main effect for ability trend in terms of bias.  A moderate main 

effect is also shown for RMSEs in Table 6c.  When the mean of the ability distribution remained 

stable over time (i.e., Conditions 1 and 2), Models 5 and 6, both of which involved IPD testing 

and fixed item parameters, produced the smallest biases and RMSEs.  When ∆ = 0.0, Model 7, 

which involved direct TCC linking with IPD testing, produced biases and RMSEs that were 

almost identical to those of Model 6.  However, when the mean of the ability distribution 

increased over time (Conditions 3 and 4), Models 5 and 6 performed much less well than Model 

7.  In the ∆ = 0.15 conditions, Model 7 was clearly the best at recovering underlying parameters. 

The effects of linking technique, IPD testing, and linking method are shown in Table 7 for 

bias and Table 8 for RMSE.  From Tables 7a and 8a, one can see that, over all conditions, there 

was less bias and smaller RMSEs in θ estimates when IPD testing was utilized prior to linking.  

The main effects for linking technique and linking method were quite small.  However, it was 

often the case that differences in bias or RMSE between levels of linking technique, IPD testing, 

or linking method changed as ∆ and δ varied.  The extent of these changes are illustrated by 

examining the interaction effects shown in Tables 7b-d for bias and 8b-d for RMSE.  As an 

example, from Table 7b, we see that the difference in bias between TCC and fixed linking was  

-0.14 − -0.09 = -0.05 for Condition 1, but was -0.25 − -0.37 = 0.12 for Condition 4. 

    

  Insert Tables 7-8 About Here  
    

Tables 7b and 8b show that linking technique was relatively unaffected by the magnitude 

of IPD, but was affected noticeably by an upward trend in ability.  Furthermore, fixed linking 

was more influenced by changes in the ability distribution than was TCC linking.  The effect of 

IPD testing on bias (Table 7c), on the other hand, was increasingly important as the magnitude of 
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IPD increased, but was not especially sensitive to whether there was a trend in ability.  A 

corresponding pattern for RMSE (Table 8c) was not apparent.  Finally, there was no evidence of 

significant interaction effects involving direct versus indirect linking (see Tables 7d and 8d). 

Item parameter estimation.  Sample item difficulty means for Y5 under the eight models 

are given in Table 9, averaged over the five replications.  One will note that the true mean item 

difficulty value, presented in the first column, is common for fixed values of δ, and is larger for 

Conditions 2 and 4 (where δ = 0.40).  Similarly, Table 10 presents the item difficulty pooled 

standard deviations for the eight models.   

    

 Insert Tables 9-10 About Here  
    

Item difficulty values were, on average, underestimated.  The variance among models in 

item difficulty estimates was considerably larger when δ = 0.40 than when δ = 0.25.  In addition, 

the estimates were less variable than the parameter values.   

Tables 11 and 12 present the average biases and RMSEs, respectively, for item difficulty.  

Examining these tables, it is clear that the models are not equally adept at recovering underlying 

item parameter values.  Models 1-3 all showed considerable bias, each producing average biases 

of at least -0.14.  Model 7, on the other hand, was unbiased, and also consistently produced the 

smallest RMSE values.  Furthermore, as ∆ and δ increased, bias increased for all models except 

Model 7 (which remained essentially unbiased in all conditions) and Model 8 (which showed 

approximately the same magnitude of bias in all conditions).  Patterns of RMSEs showed that the 

variability of estimates of item difficulty were particularly affected by values of ∆ and δ in 

Models 1 and 2.  Linking method appeared to have only a very small effect, although it is 
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important to realize that biases in the direct linking condition were consistently less than or equal 

to those for indirect linking. 

    

 Insert Tables 11-12 About Here  
    

The effects of magnitude of IPD and ability trend on item difficulty estimation in model are 

shown in panels (b) and (c) of Tables 11 and 12.  As was found with ability estimation, Models 

5-8 were all affected very little by increasing magnitudes of simulated IPD.  In contrast, Models 

1-4 all showed increased bias, and Models 1-2 showed increased RMSEs, in Conditions 2 and 4.   

Models using TCC linking (i.e., Models 3, 4, 7, and 8) were unaffected by an ability trend, 

whereas models using fixed linking (i.e., Models 1, 2, 5, and 6) all showed increased bias when 

the mean of the ability distribution increased over time.  Interestingly, this same pattern was not 

observed for ability estimation, although the magnitude of the bias was less in the TCC 

conditions than in the fixed linking conditions.  Ability trend appeared to have very little effect 

on the RMSEs among difficulty estimates for any of the models. 

The item difficulty effects of linking technique, IPD testing, and linking method are shown 

in Table 13 for bias and Table 14 for RMSE.  Panel (a) shows that both linking technique and 

IPD testing had important effects on the bias and RMSE of item difficulty estimates.  The impact 

of ∆ and δ on these effects are shown more fully in panels (b) - (d).  Table 13b shows little 

difference between the fixed and TCC linking procedures when ∆ = 0.0, but a rather large 

difference (in favor of the TCC method) when ∆ = 0.15.  Similarly, Tables 13c and 14c show 

that IPD testing becomes more important as the magnitude of IPD increases.  The main and 

interaction effects for linking method (Tables 13d and 14d) were all quite small. 
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 Insert Tables 13-14 About Here  
    

The same outcome measures reported for item difficulty were also estimated for item 

discrimination and item pseudo-guessing parameters.  Biases and RMSEs of ai and ci were 

virtually identical in all four ∆ x δ conditions, and were not noticeably or systematically different 

across any of the eight linking models.  Therefore, tabled results for ai and ci are not shown here.  

Within the context of this study, this result is not surprising because IPD was simulated by 

manipulating the bi values only.  Had the ai or ci also been allowed to exhibit drift, it is possible 

that some differences across models or simulating conditions would have emerged. 

Summary of Simulation Study 

When item parameters drift over multiple years, the corresponding effects may compound 

in a way that has important implications for ability estimation.  This simulation study examined 

the effectiveness of different item linking strategies at recovering underlying model parameters 

in the face of varying magnitudes of IPD and the presence or absence of a linear trend in the 

mean of the ability distribution.  Unlike previous studies (e.g., Wells et al., 2002) which showed 

that, between two years, bias in ability estimates did not exceed 0.14, even when a considerable 

amount of IPD was present, in this study, we studied the compounding effects of IPD over a 

multiple-year period and found that ability biases that were substantially larger.  In fact, for some 

models in certain conditions, biases were as large as -0.52 (see Model 2 in Condition 4).  Also, 

differences between models within a condition were substantial.  The ranges (i.e., absolute value 

of the maximum minus the minimum) in biases among the eight models were .15, .24, .23, and 

.39 for Conditions 1-4, respectively.  Similar patterns were found with item difficulty estimates.   
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There were substantial differences between models using fixed and TCC linking, and 

between those that tested for IPD before linking and those that did not.  Models that tested first 

for IPD were uniformly better, but the difference became more pronounced as δ increased from 

0.25 to 0.40.  As an example, when δ = 0.40, bias increased an average of just .02 for Models 5-8 

over its value when δ = 0.25, compared to an increase of .09 for Models 1-4.   

There were similar differences observed when the mean of the ability distribution increased 

over time.  Fixed linking appeared to be a reasonable strategy provided the mean of the ability 

distribution was the same for different test forms.  When the mean increased across time, 

however, fixing item parameters resulted in much more biased estimates than were found using 

the TCC method.  In fact, average biases for the fixed linking models were higher by 0.22 when 

an ability trend existed.  By comparison, average biases increased, also, in the TCC models, but 

only by 0.05. 

The effect of linking method was small.  However, what patterns were discernible 

suggested that direct linking is to be preferred over indirect linking.  Of course, unless the base 

test consists of many items, one ramification of direct linking is that the exposure rates of linking 

items will be higher than might otherwise be desired.  This in turn may cause unusually large 

magnitudes of IPD or large numbers of drifting items among the anchor set.  This study did not 

examine any possible effects caused by anchor items that are more likely to be affected by IPD. 

Overall, Model 7 appeared to best reproduce the underlying ability parameters.  In the ∆ = 

0.0 conditions, Models 5 and 6 actually produced less bias than Model 7; however, the 

differences between Models 5 and 6 and Model 7 were slight, and the overall amount of bias in 

Model 7 was still fairly small.  In the ∆ = 0.15 conditions, on the other hand, Model 7 was much 

preferred to Models 5 and 6.  Because it can never be known for certain how much items will 
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drift and whether the ability distribution over time is changing, the results of this study suggest 

that it is safest to use direct TCC linking with IPD testing. 

The analysis of item difficulty was very similar to that for ability.  Model 7, again, 

recovered parameters better than competing models.  In fact, Model 7 recovered difficulty 

parameters without (or with only the most minimal amounts of) bias for all conditions.  Given 

that item parameters were recovered so well, it is a bit surprising that ability parameters were not 

recovered better.  Though this remains an area for future study, one possible explanation is that 

the true pattern of IPD was not well recovered, leading to incorrect sets of items being included 

in the anchor set.  Although Models 5-8 included testing for IPD, it was often the case that items 

simulated to drift were not correctly identified (Type II errors), whereas items that were not 

simulated to drift were identified (Type I errors).  For example, in Model 7, the Type I error rates 

were 0.19, 0.38, 0.30, and 0.36 for Conditions 1-4, respectively.  Consequently, many items that 

should have been used as anchors (i.e., their parameter values had not changed) were excluded 

because of false positive results on the LR test.  At the same time, power in Model 7 was 0.30, 

0.43, 0.38, and 0.50 in Conditions 1-4, respectively.  This suggests that, in all conditions, at least 

half of the drifting items were not detected as drifting and were included among the anchor set.  

These items, though they demonstrated empirical effects that were too small to be detected, may 

collectively have caused small amounts of bias in ability estimation, particularly when one 

considers that all IPD was simulated in the same direction.  If it is true that misidentifying 

drifting items may cause ability estimates to be biased, it could further explain why direct linking 

outperformed indirect linking.  It is possible that choosing a different IPD detection method, such 

as Lord’s χ2 with a common ci, might improve the pattern of correct and incorrect detections 

(Donoghue & Isham, 1998).   
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A Real-Data Example 

Data Source 

The Information Seeking Skills Test (ISST) is a 53-item computer-delivered exam 

developed by reference librarians to assess information literacy among college students.  Over a 

four year period (ranging from the 1998-99 to 2001-02 academic years), 8,721 students at James 

Madison University completed the assessment (353 students the first year, 2,671 the second year, 

2,741 the third year, and 2,956 the fourth year).  The same form of the ISST was used for all four 

years.  One item was dropped because of poor statistics. 

Beginning in the Fall of 1999, it became required of students at James Madison University 

that they take and pass the ISST during their first year.  Due to the changes in availability and 

use of technology on campus, in addition to the change in stakes between the first and second 

year, it was assumed that the behavior of some of the items on this test might change over this 

four-year period.  In fact, Demars (2004) found several of the items on this test included 

systematic linear IPD. 

Methods 

The same eight linking models were used to link the forms across all four year.  Year 4 

means and standard deviations were computed for all model parameters under each of the 

models, and correlations and root mean square differences were computed for all parameters 

between all models.  To evaluate the impact of any differences on examinees, pass rates were 

also examined for a variety of hypothetical cut-scores.   

Note that because all items were common across the four years and Models 1 and 2 fix the 

parameter estimates for all common items, results for Models 1 and 2 are identical in this real 

data analysis. 



  The Impact of Compounding Drift 19

Results 

Means and standard deviations for all model parameters are shown in Table 15 for the eight 

linking models.  For the most part, the models performed fairly similarly with regards to ability 

estimation.  Model 3 produced the highest mean θ̂  and the lowest variability, whereas Model 6 

produced the lowest mean θ̂  and the most variability. 

    

  Insert Table 15 About Here  
    

The eight models varied more in terms of item parameter estimation.  Average item ai 

values ranged from 0.74 (Model 6) to 1.01 (Model 4).  Standard deviations among ai values were 

very similar, with the exception of that for Model 6 which was slightly higher.  Average bi values 

ranged from -0.96 (Model 6) to -0.49 (Models 1 and 2) and standard deviations ranged from 0.89 

(Model 4) to 2.01 (Models 1 and 2).  Although these differences appear large, these numbers are 

somewhat spurious.  One item in the Year 1 calibration sample was estimated to have a difficulty 

of 12.18.  In Year 4, however, the item difficulty estimates for this item from Models 3-8 ranged 

from 2.61 (Model 4) to 4.70 (Model 5).  Because Models 1 and 2 use fixed item parameters and 

no IPD testing, the item difficulty was 12.18 for both Models 1 and 2.  Therefore, although there 

was considerable variance among the item characteristic curves for this item, all looked 

reasonably similar for −2 ≤ θ ≤ 2.  The estimation of pseudo-guessing parameters was very 

similar across models. 

Table 16 shows the average differences and RMSDs between linking models for θ̂ , ai, and 

bi.  Average differences and RMSDs for ci were uniformly very small, so are not given here.  

Most models were quite similar, on average, with respect to ability estimation (Table 16a).  The 

largest mean difference was 0.16, between Models 3 and 6.  Model 7, which worked best in the 
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simulation study, differed by no more than 0.11 with any model (Model 6).  RMSDs were 

similarly modest, never exceeding 0.23 (between Models 3 and 6).  The largest RMSD between 

Model 7 and another model was 0.17 (Models 1 and 2).   

    

  Insert Table 16 About Here  
    

Item discrimination values (Table 16b) were estimated similarly across models, with the 

possible exception of Model 4, which consistently estimated items with higher discrimination.  

All average differences among other models were no greater than 0.14, though RMSDs did get 

as large as 0.35.   

Item difficulty estimates were different for sets of models.  In particular, Models 5 and 6 

appeared similar to each other, but rather different from the remaining models.  Models 1, 2, 3, 4, 

7, and 8 appeared, on average, to recover similar estimates of item difficulty.  However, RMSDs 

for Models 1 and 2 were appreciably higher than those for other models.  This is likely due to the 

one extreme item mentioned earlier, which had its difficulty estimated at 12.18 for Models 1 and 

2, but no higher than 4.70 for any other model.   

Correlations between θ̂  values under the eight models were extremely high, ranging from 

0.97 – 1.00.  This suggests, in addition to the θ̂  values being of similar magnitude (as was shown 

in Tables 15 and 16), the rank-ordering of examinees is also very similar.   

Correlations among item parameters were lower, and are given in Table 17 for the ai (upper 

triangle) and bi (lower triangle) values.  Item parameter estimates for the four TCC models 

(Models 3, 4, 7 and 8) all correlated perfectly with each other.  Though the data are not shown, 

θ̂  values for these four models also correlated perfectly.  This result is expected because the four 

models apply a linear transformation on θ̂ , ai, and bi. The transformation coefficients will differ 
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for each of the models, but the transformation will always be linear and will be applied to all 

items and people, and correlations are invariant to linear transformation.  Correlations between 

Models 5 and 6 and Models 3, 4, 7, and 8 were strong.  Correlations between Models 1 and 2 and 

other models—particularly the four TCC models—were fairly modest.  Correlations for the ci 

values are not provided because (a) they were estimated well by all models, and (b) there was too 

little variance in their estimated values.   

    

  Insert Table 17 About Here  
    

The impact of the differences between models can be illustrated by examining pass rates 

for a variety of different hypothetical cut scores.  Table 18 shows the percentage of students who 

would have passed the ISST for six different cut scores, ranging from θ = −0.25 to 1.00, in 

increments of 0.25.  This particular θ range was selected because for values outside this range, 

there was very little difference among the models.  Within this range, however, there are some 

noteworthy differences.  Over this range of potential cut scores, Model 3 uniformly produced the 

highest passing rates.  The passing rate for Model 6 was lowest for θ ≤ 0.25.  Models 1 and 2 

were lowest for θ ≥ 0.75.  And Models 1, 2, and 6 were tied for lowest at θ = 0.50.   

    

  Insert Table 18 About Here  
    

Although differences in θ̂  values were small, the ramifications of these differences could 

be rather large, depending on the location of the cut score.  For 0.00 ≤ θ ≤ 0.75, the maximum 

difference between passing rates was at least 0.10, and in some cases was as high as 0.15.  For 

example, if the cut score during Year 4 had been set at θ = 0.50, approximately 1,508 students 
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would have passed under Models 1, 2, or 6, approximately 1,744 students would have passed 

under Model 7, and approximately 1,951 students would have passed under Model 3.  The 

difference (between Models 3 and 6) represents a total of 443 students; these are the students 

who would pass under some models, but not under all models.   

Summary of Real-Data Study 

This study used four years’ worth of data from the ISST to demonstrate the effects of IPD 

and the linking model on ability and item parameter estimation.  Relatively small differences 

were observed between θ̂  values from the eight models, but these differences were neither trivial 

nor inconsequential.  Depending on the location of the cut score, the passing rates for the models 

differed by as much as 0.15.  Important differences between models in passing rates existed over 

about 1.25 logits on the ability scale.   

Differences in item parameter estimates were generally small, though there were some 

notable exceptions.  Though, on average, Models 1 and 2 produced item parameter estimates that 

were fairly similar to those from other models, there was also quite a bit more variability in those 

estimates than with other models.  Also, the RMSDs between Models 1 and 2 and other models 

were quite large, indicating that there were some items for which there were rather large 

differences.  In addition, Models 5 and 6 produced difficulty estimates that were noticeably 

easier than those from other models.   

It may be comforting to know that, among the eight models, parameter estimates for Model 

7, which was best at recovering parameters in the simulation study, tended to be in the middle, 

rather than consistently higher or lower than the others.  Therefore, although the differences 

between the most and least extreme models was substantial, the differences between each model 

and the best model were more reasonable.    
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Conclusions 

 The presence of unaccounted for IPD holds potential to negatively affect the linking 

process, possibly resulting in spurious estimates of examinee ability.  Although previous research 

has shown that IRT ability estimation is robust to the presence of normally occurring amounts 

and magnitudes of IPD, studies have not fully investigated this longitudinally, where IPD and 

linking errors may compound over time. 

 In this study, eight different models for linking and accounting for IPD were considered 

and applied to both simulated data and a test of information literacy over multiple years.  The 

results of this study showed that choice of linking/IPD model can have a large effect on the 

resulting θ̂ , as well as on passing rates.  Models that tested items for IPD and excluding drifting 

items from the linking process tended to recover the underlying parameters better, particularly as 

the magnitude of IPD increased.  Models that used TCC linking also performed better than 

models that fixed the parameter values for anchor items, particularly for conditions where the 

mean of the ability distribution increased over time.  Finally, directly linking each new form to 

the base form was slightly preferable to indirectly linking it; however the ramifications of 

potentially increasing the amount and/or magnitude of IPD among the linking items due to over-

exposure remains to be addressed.  Model 7, which directly linked to the base metric after first 

removing drifting items, performed fairly similarly across simulated conditions, and was 

consistently the best or among the best of the models. 

 Although the simulation study demonstrated that the treatment of drifting items and the 

linking technique can affect ability estimation, the real data analysis showed that, in practice, the 

differences may be less pronounced.  There are several reasons that this may be the case.  About 

one-third of the items each year were simulated as drifting by increasing the item difficulty by 
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0.4 logits.  In practice, it is unlikely that all drifting items will drift in a common direction.  Some 

may become easier, while others become harder, thereby essentially canceling each other out.  

Furthermore, not all drifting items will change by as much as 0.4 logits.  However, some items 

may have even larger magnitudes of IPD, particularly if they are administered in two very 

different locations in the test (Oshima, 1994), as might be the case if end-of-test items are 

reserved for pilot testing.  Finally, having as many as one-third of the items drift between two 

years may be higher than is encountered in many testing programs. 
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Table 1 

Illustration of Direct Versus Indirect Linking 
 

Form 1 Form 2 Form 3 Form 4 Form 5 
1 1    
2 2 1 1  
3     
4 3 2   
5 4    
6     
7 5 3 2 1 
8 6 4 3 2 
9     
10 7    
11 8 5 4 3 
12 9 6   
13 10 7 5  
14     
 11 8 6 4 
 12 9   
 13 10 7 5 
 14    
  11 8 6 
  12   
  13 9 7 
  14 10  
   11 8 
   12 9 
   13  
   14 10 
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Table 2 

Description of Linking and Drift Models Studied 
 
 

Common-Item Linking 
Technique 

Linking Method Drift Testing 

YES 

 

Fixed Item 
Parameters 

TCC 
Method 

Directly 
with Y1 

Indirectly 
with Y1 

NO 
LR Test 

Model 1 X  X  X  
Model 2 X   X X  
Model 3  X X  X  
Model 4  X  X X  
Model 5 X  X   X 
Model 6 X   X  X 
Model 7  X X   X 
Model 8  X  X  X 
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Table 3 
 

Y5 Mean θ̂  for Linking Models 
 
 

  Linking Models  
   True 1 2 3 4 5 6 7 8 SD  
1.  ∆ = 0.0, δ = 0.25 -0.01 -0.12 -0.15 -0.20 -0.16 -0.05 -0.09 -0.09 -0.14 0.05 

2.  ∆ = 0.0, δ = 0.40 0.00 -0.15 -0.22 -0.28 -0.23 -0.04 -0.08 -0.10 -0.17 0.08 

3.  ∆ = 0.15, δ = 0.25 0.58 0.30 0.22 0.35 0.38 0.34 0.36 0.44 0.42 0.07 

4.  ∆ = 0.15, δ = 0.40  0.61 0.21 0.09 0.26 0.32 0.32 0.35 0.48 0.39 0.12  
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Table 4 
 

Y5 Pooled Standard Deviations of θ̂  for Linking Models 
 

  Linking Models  
   True 1 2 3 4 5 6 7 8 SD  
1.  ∆ = 0.0, δ = 0.25 1.00 0.82 0.82 0.83 0.86 0.85 0.85 0.84 0.85 0.02 

2.  ∆ = 0.0, δ = 0.40 1.01 0.83 0.81 0.87 0.88 0.86 0.86 0.87 0.91 0.03 

3.  ∆ = 0.15, δ = 0.25 1.00 0.84 0.83 0.84 0.83 0.87 0.84 0.85 0.83 0.02 

4.  ∆ = 0.15, δ = 0.40  1.01 0.81 0.82 0.83 0.84 0.87 0.85 0.84 0.85 0.02  
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Table 5 
 

Bias for Linking Models 
 

5a.  Bias for ability trend x magnitude of drift conditions 
 

  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
1.  ∆ = 0.0, δ = 0.25 -0.11 -0.14 -0.19 -0.15 -0.04 -0.08 -0.08 -0.13 -0.11 0.05 

2.  ∆ = 0.0, δ = 0.40 -0.15 -0.21 -0.28 -0.22 -0.04 -0.08 -0.10 -0.17 -0.16 0.08 

3.  ∆ = 0.15, δ = 0.25 -0.28 -0.37 -0.23 -0.20 -0.25 -0.22 -0.14 -0.17 -0.23 0.07 

4.  ∆ = 0.15, δ = 0.40  -0.40 -0.52 -0.35 -0.29 -0.29 -0.26 -0.13 -0.22 -0.31 0.12  

    -0.24 -0.31 -0.26 -0.22 -0.15 -0.16 -0.11 -0.17 -0.20 0.11 

 
5b.  Bias for levels of magnitude of drift 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
δ = 0.25  -0.20 -0.25 -0.21 -0.18 -0.14 -0.15 -0.11 -0.15 -0.17 0.05 

δ = 0.40   -0.27 -0.36 -0.31 -0.26 -0.17 -0.17 -0.11 -0.19 -0.23 0.09  

 Average   -0.24 -0.31 -0.26 -0.22 -0.15 -0.16 -0.11 -0.17 -0.20 0.07 

 
5c.  Bias for levels of ability trend 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
∆ = 0.0   -0.13 -0.18 -0.23 -0.19 -0.04 -0.08 -0.09 -0.15 -0.14 0.06 

∆ = 0 .15   -0.34 -0.44 -0.29 -0.24 -0.27 -0.24 -0.13 -0.19 -0.27 0.09  

 Average   -0.24 -0.31 -0.26 -0.22 -0.15 -0.16 -0.11 -0.17 -0.20 0.10 
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Table 6 
 

RMSE for Linking Models 
 

6a.  RMSE for ability trend x magnitude of drift conditions 
 

  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
1.  ∆ = 0.0, δ = 0.25 0.40 0.41 0.59 0.40 0.38 0.39 0.39 0.40 0.42 0.07 

2.  ∆ = 0.0, δ = 0.40 0.41 0.44 0.46 0.43 0.37 0.38 0.38 0.40 0.41 0.03 

3.  ∆ = 0.15, δ = 0.25 0.46 0.52 0.43 0.42 0.43 0.42 0.39 0.41 0.43 0.04 

4.  ∆ = 0.15, δ = 0.40  0.55 0.64 0.51 0.46 0.46 0.45 0.38 0.42 0.48 0.08  

    0.45 0.50 0.50 0.43 0.41 0.41 0.39 0.41 0.44 0.06 

 
6b.  RMSE for levels of magnitude of drift 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
δ = 0.25  0.43 0.46 0.51 0.41 0.41 0.40 0.39 0.40 0.43 0.04 

δ = 0.40   0.48 0.54 0.48 0.45 0.42 0.41 0.38 0.41 0.45 0.05  

 Average   0.45 0.50 0.50 0.43 0.41 0.41 0.39 0.41 0.44 0.05 

 
6c.  RMSE for levels of ability trend 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
∆ = 0.0   0.40 0.42 0.53 0.42 0.37 0.38 0.39 0.40 0.41 0.05 

∆ = 0 .15   0.50 0.58 0.47 0.44 0.45 0.44 0.39 0.42 0.46 0.06  

 Average   0.45 0.50 0.50 0.43 0.41 0.41 0.39 0.41 0.44 0.05 
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Table 7 
 

Effects on θ̂  of Linking Technique, IPD Testing, and Linking Method on Bias 
 

Table 7a.  Bias:  Main Effects of Linking Technique, IPD Testing, and Linking Method 
 

 Linking Technique IPD Testing Linking Method    
   Fixed TCC No Yes Indirect Direct  
1.  ∆ = 0.0, δ = 0.25  -0.09 -0.14 -0.15 -0.08 -0.12 -0.10 

2.  ∆ = 0.0, δ = 0.40  -0.12 -0.19 -0.22 -0.10 -0.17 -0.14 

3.  ∆ = 0.15, δ = 0.25  -0.28 -0.19 -0.27 -0.20 -0.24 -0.23 

4.  ∆ = 0.15, δ = 0.40  -0.37 -0.25 -0.39 -0.22 -0.32 -0.29  

    -0.22 -0.19 -0.26 -0.15 -0.21 -0.19 

 
Table 7b.  Differences in Bias (TCC − Fixed):  Interaction Effect for Linking Technique 

 
 ∆ = 0.0 ∆ = 0.15 Average 

δ = 0.25 -0.05 0.10 0.02 
δ = 0.40 -0.07 0.12 0.02 
Average -0.06 0.11 0.02 

 
 
 

Table 7c.  Differences in Bias (Yes − No):  Interaction Effect for IPD Testing 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 0.07 0.08 0.07 
δ = 0.40 0.12 0.16 0.14 
Average 0.09 0.12 0.11 

 
 
 

Table 7d.  Differences in Bias (Direct − Indirect):  Interaction Effect for Linking Method 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 0.02 0.01 0.02 
δ = 0.40 0.03 0.03 0.03 
Average 0.03 0.02 0.02 
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Table 8 
 

Effects on θ̂  of Linking Technique, IPD Testing, and Linking Method on RMSE 
 

Table 8a.  RMSE:  Main Effects of Linking Technique, IPD Testing, and Linking Method 
 

 Linking Technique IPD Testing Linking Method    
   Fixed TCC No Yes Indirect Direct  
1.  ∆ = 0.0, δ = 0.25  0.39 0.45 0.45 0.39 0.40 0.44 

2.  ∆ = 0.0, δ = 0.40  0.40 0.42 0.43 0.38 0.41 0.41 

3.  ∆ = 0.15, δ = 0.25  0.46 0.41 0.46 0.41 0.44 0.43 

4.  ∆ = 0.15, δ = 0.40  0.52 0.45 0.54 0.43 0.49 0.48  

    0.44 0.43 0.47 0.40 0.44 0.44 

 
Table 8b.  Differences in RMSE (TCC − Fixed):  Interaction Effect for Linking Technique 

 
 ∆ = 0.0 ∆ = 0.15 Average 

δ = 0.25 0.05 -0.05 0.00 
δ = 0.40 0.02 -0.08 -0.03 
Average 0.04 -0.06 -0.01 

 
 
 

Table 8c.  Differences in RMSE (Yes − No):  Interaction Effect for IPD Testing 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 -0.06 -0.04 -0.05 
δ = 0.40 -0.05 -0.11 -0.08 
Average -0.06 -0.08 -0.07 

 
 
 

Table 8d.  Differences in RMSE (Direct − Indirect):  Interaction Effect for Linking Method 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 0.04 -0.01 0.01 
δ = 0.40 -0.01 -0.02 -0.01 
Average 0.02 -0.02 0.00 
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Table 9 

 
Y5 Mean Item Difficulty for Linking Models 

 
  Linking Models  
   True 1 2 3 4 5 6 7 8 Mean  
1.  ∆ = 0.0, δ = 0.25 0.21 0.16 0.12 0.11 0.14 0.24 0.18 0.20 0.16 0.04 

2.  ∆ = 0.0, δ = 0.40 0.31 0.14 0.06 0.12 0.18 0.32 0.25 0.30 0.24 0.09 

3.  ∆ = 0.15, δ = 0.25 0.21 0.09 0.01 0.12 0.16 0.11 0.15 0.21 0.19 0.06 

4.  ∆ = 0.15, δ = 0.40  0.31 0.07 -0.05 0.11 0.18 0.21 0.19 0.34 0.24 0.12  
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Table 10 
 

Y5 Pooled Standard Deviations of Item Difficulty for Linking Models 
 

  Linking Models  
   True 1 2 3 4 5 6 7 8 Mean  
1.  ∆ = 0.0, δ = 0.25 1.09 0.98 1.02 0.97 1.00 0.95 1.06 0.98 1.00 0.03 

2.  ∆ = 0.0, δ = 0.40 1.16 0.92 0.94 1.03 1.04 0.98 1.01 1.03 1.07 0.05 

3.  ∆ = 0.15, δ = 0.25 1.09 1.03 0.99 1.02 1.01 1.08 1.02 1.04 1.01 0.03 

4.  ∆ = 0.15, δ = 0.40  1.16 0.95 1.00 1.04 1.05 1.05 1.03 1.05 1.07 0.04  
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Table 11 
 

Bias for Linking Models 
 

11a.  Bias for ability trend x magnitude of drift conditions 
 

  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
1.  ∆ = 0.0, δ = 0.25 -0.05 -0.09 -0.10 -0.07 0.03 -0.03 0.00 -0.05 -0.05 0.04 

2.  ∆ = 0.0, δ = 0.40 -0.17 -0.25 -0.19 -0.13 0.01 -0.06 -0.01 -0.06 -0.11 0.09 

3.  ∆ = 0.15, δ = 0.25 -0.12 -0.19 -0.08 -0.05 -0.10 -0.06 0.00 -0.02 -0.08 0.06 

4.  ∆ = 0.15, δ = 0.40  -0.24 -0.35 -0.19 -0.13 -0.10 -0.12 0.03 -0.06 -0.15 0.12  

    -0.15 -0.22 -0.14 -0.09 -0.04 -0.07 0.00 -0.05 -0.09 0.09 

 
11b.  Bias for levels of magnitude of drift 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
δ = 0.25  -0.09 -0.14 -0.09 -0.06 -0.03 -0.05 0.00 -0.03 -0.06 0.04 

δ = 0.40   -0.20 -0.30 -0.19 -0.13 -0.04 -0.09 0.01 -0.06 -0.13 0.09  

 Average   -0.15 -0.22 -0.14 -0.09 -0.04 -0.07 0.00 -0.05 -0.09 0.08 

 
11c.  Bias for levels of ability trend 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
∆ = 0.0   -0.11 -0.17 -0.14 -0.10 0.02 -0.04 -0.01 -0.06 -0.08 0.06 

∆ = 0 .15   -0.18 -0.27 -0.14 -0.09 -0.10 -0.09 0.02 -0.04 -0.11 0.08  

 Average   -0.15 -0.22 -0.14 -0.09 -0.04 -0.07 0.00 -0.05 -0.09 0.08 
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Table 12 
 

RMSE for Linking Models 
 

12a.  RMSE for ability trend x magnitude of drift conditions 
 

  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
1.  ∆ = 0.0, δ = 0.25 0.49 0.49 0.33 0.31 0.36 0.43 0.31 0.31 0.38 0.08 

2.  ∆ = 0.0, δ = 0.40 0.57 0.58 0.38 0.35 0.38 0.46 0.33 0.33 0.42 0.10 

3.  ∆ = 0.15, δ = 0.25 0.47 0.46 0.35 0.34 0.41 0.39 0.34 0.34 0.39 0.05 

4.  ∆ = 0.15, δ = 0.40  0.59 0.64 0.37 0.33 0.36 0.42 0.31 0.32 0.42 0.13  

    0.53 0.54 0.36 0.33 0.37 0.42 0.32 0.33 0.40 0.09 

 
12b.  RMSE for levels of magnitude of drift 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
δ = 0.25  0.48 0.48 0.34 0.33 0.38 0.41 0.32 0.33 0.38 0.07 

δ = 0.40   0.58 0.61 0.38 0.34 0.37 0.44 0.32 0.32 0.42 0.12  

 Average   0.53 0.54 0.36 0.33 0.37 0.42 0.32 0.33 0.40 0.09 

 
12c.  RMSE for levels of ability trend 

 
  Linking Models  
   1 2 3 4 5 6 7 8 Mean SD  
∆ = 0.0   0.53 0.53 0.36 0.33 0.37 0.44 0.32 0.32 0.40 0.09 

∆ = 0 .15   0.53 0.55 0.36 0.34 0.38 0.41 0.32 0.33 0.40 0.09  

 Average   0.53 0.54 0.36 0.33 0.37 0.42 0.32 0.33 0.40 0.09 
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Table 13 
 

Effects on Item Difficulty of Linking Technique, IPD Testing, and Linking Method on Bias 
 

Table 13a.  Bias:  Main Effects of Linking Technique, IPD Testing, and Linking Method 
 

 Linking Technique IPD Testing Linking Method    
   Fixed TCC No Yes Indirect Direct  
1.  ∆ = 0.0, δ = 0.25  -0.04 -0.06 -0.08 -0.01 -0.06 -0.03 

2.  ∆ = 0.0, δ = 0.40  -0.12 -0.10 -0.18 -0.03 -0.13 -0.09 

3.  ∆ = 0.15, δ = 0.25  -0.12 -0.04 -0.11 -0.04 -0.08 -0.08 

4.  ∆ = 0.15, δ = 0.40  0.20 -0.09 -0.23 -0.06 -0.17 -0.13  

    -0.12 -0.07 -0.15 -0.04 -0.11 -0.08 

 
Table 13b.  Differences in Bias (TCC − Fixed):  Interaction Effect for Linking Technique 

 
 ∆ = 0.0 ∆ = 0.15 Average 

δ = 0.25 -0.02 0.08 0.03 
δ = 0.40 0.02 0.11 0.07 
Average 0.00 0.10 0.05 

 
 
 

Table 13c.  Differences in Bias (Yes − No):  Interaction Effect for IPD Testing 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 0.07 0.07 0.07 
δ = 0.40 0.15 0.17 0.16 
Average 0.11 0.12 0.11 

 
 
 

Table 13d.  Differences in Bias (Direct − Indirect):  Interaction Effect for Linking Method 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 0.03 0.00 0.02 
δ = 0.40 0.04 0.04 0.04 
Average 0.03 0.02 0.03 
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Table 14 
 

Effects on Item Difficulty of Linking Technique, IPD Testing, and Linking Method on RMSE 
 

Table 14a.  RMSE:  Main Effects of Linking Technique, IPD Testing, and Linking Method 
 

 Linking Technique IPD Testing Linking Method    
   Fixed TCC No Yes Indirect Direct  
1.  ∆ = 0.0, δ = 0.25  0.44 0.32 0.40 0.35 0.38 0.37 

2.  ∆ = 0.0, δ = 0.40  0.50 0.35 0.47 0.38 0.43 0.42 

3.  ∆ = 0.15, δ = 0.25  0.43 0.34 0.40 0.37 0.38 0.36 

4.  ∆ = 0.15, δ = 0.40  0.50 0.33 0.48 0.35 0.43 0.41  

    0.47 0.34 0.44 0.36 0.41 0.40 

 
Table 14b.  Differences in RMSE (TCC − Fixed):  Interaction Effect for Linking Technique 

 
 ∆ = 0.0 ∆ = 0.15 Average 

δ = 0.25 -0.12 -0.09 -0.11 
δ = 0.40 -0.15 -0.17 -0.16 
Average -0.13 -0.13 -0.13 

 
 
 

Table 14c.  Differences in RMSE (Yes − No):  Interaction Effect for IPD Testing 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 -0.05 -0.03 -0.04 
δ = 0.40 -0.10 -0.13 -0.11 
Average -0.07 -0.08 -0.08 

 
 
 

Table 14d.  Differences in RMSE (Direct − Indirect):  Interaction Effect for Linking Method 
 

 ∆ = 0.0 ∆ = 0.15 Average 
δ = 0.25 -0.01 0.00 0.00 
δ = 0.40 -0.01 -0.02 -0.02 
Average -0.01 -0.01 -0.01 
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Table 15 

 
Year 4 Parameter Means and Standard Deviations for Linking Models 

 
  Linking Models  
   1 2 3 4 5 6 7 8  
 Mean θ̂  0.53 0.53 0.67 0.57 0.53 0.51 0.62 0.65  

 St. Dev. θ̂   0.57 0.57 0.47 0.52 0.61 0.62 0.58 0.58 

 

 Mean a 0.82 0.82 0.88 1.01 0.75 0.74 0.87 0.85  

 St. Dev. a  0.38 0.38 0.37 0.43 0.35 0.35 0.37 0.36 

 

 Mean b -0.49 -0.49 -0.59 -0.50 -0.82 -0.96 -0.61 -0.60  

 St. Dev. b  2.01 2.01 1.03 0.89 1.23 1.17 1.04 1.06 

 

 Mean c 0.24 0.24 0.27 0.27 0.25 0.24 0.27 0.27  

 St. Dev. c  0.04 0.04 0.06 0.06 0.04 0.05 0.06 0.06  
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Table 16 
 

Average Differences and RMSDs Between Linking Models 
 

16a.  Ability Statistics 
 

  Linking Models  
   1 2 3 4 5 6 7 8  
 Model 1  0.00 -0.14 -0.05 -0.01 0.01 -0.09 -0.12 
 Model 2 0.00  -0.14 -0.05 -0.01 0.01 -0.09 -0.12 
 Model 3 0.22 0.22  0.09 0.13 0.16 0.05 0.02 
 Model 4 0.15 0.15 0.12  0.04 0.06 -0.04 -0.07 
 Model 5 0.12 0.12 0.21 0.14  0.02 -0.09 -0.11 
 Model 6 0.12 0.12 0.23 0.14 0.09  -0.11 -0.13 
 Model 7 0.17 0.17 0.12 0.07 0.13 0.14  -0.03  
 Model 8  0.18 0.18 0.12 0.10 0.15 0.16 0.03   
 

16b.  Item Discrimination Statistics 
 

  Linking Models  
   1 2 3 4 5 6 7 8  
 Model 1  0.00 -0.06 -0.19 0.07 0.08 -0.05 -0.03 
 Model 2 0.00  -0.06 -0.19 0.07 0.08 -0.05 -0.03 
 Model 3 0.35 0.35  -0.13 0.13 0.14 0.01 0.03 
 Model 4 0.42 0.42 0.15  0.26 0.28 0.15 0.17 
 Model 5 0.24 0.24 0.28 0.38  0.01 -0.12 -0.10 
 Model 6 0.26 0.26 0.26 0.37 0.22  -0.13 -0.11 
 Model 7 0.34 0.34 0.01 0.16 0.28 0.25  0.02 
 Model 8  0.34 0.34 0.03 0.18 0.26 0.24 0.02   
 

16c.  Item Difficulty Statistics 
 

  Linking Models  
   1 2 3 4 5 6 7 8  
 Model 1  0.00 0.10 0.00 0.32 0.47 0.11 0.11 
 Model 2 0.00  0.10 0.00 0.32 0.47 0.11 0.11 
 Model 3 1.53 1.53  -0.09 0.23 0.37 0.02 0.01 
 Model 4 1.55 1.55 0.16  0.32 0.46 0.11 0.10 
 Model 5 1.36 1.36 0.56 0.64  0.15 -0.21 -0.21 
 Model 6 1.55 1.55 0.61 0.69 0.64  -0.36 -0.36 
 Model 7 1.52 1.52 0.02 0.19 0.55 0.60  -0.01 
 Model 8  1.52 1.52 0.04 0.20 0.55 0.61 0.02   

Note:  Upper diagonal contains average pairwise differences.  Lower diagonal 
contains root mean squared differences between model pairs. 
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Table 17 
 

Correlations Between Linking Models for Item Discrimination and Difficulty 
 
  Linking Models  
   1 2 3 4 5 6 7 8  
 Model 1  1.00 0.57 0.57 0.80 0.76 0.57 0.57 
 Model 2 1.00  0.57 0.57 0.80 0.76 0.57 0.57 
 Model 3 0.66 0.66  1.00 0.75 0.81 1.00 1.00 
 Model 4 0.66 0.66 1.00  0.75 0.81 1.00 1.00 
 Model 5 0.76 0.76 0.91 0.91  0.80 0.75 0.75 
 Model 6 0.67 0.67 0.91 0.91 0.86  0.81 0.81 
 Model 7 0.66 0.66 1.00 1.00 0.91 0.91  1.00 
 Model 8  0.66 0.66 1.00 1.00 0.91 0.91 1.00   

Note:  Upper diagonal contains correlations between item discrimination values.  
Lower diagonal contains correlations between item difficulty values. 
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Table 18 
 

Linking Models’ Pass Rates for Different Cut Scores 
 
   Linking Models  
  Cut Score  1 2 3 4 5 6 7 8  
 θ = −0.25 0.92 0.92 0.97 0.95 0.91 0.90 0.94 0.94 
 θ = 0.00 0.84 0.84 0.92 0.88 0.81 0.80 0.87 0.87 
 θ = 0.25 0.69 0.69 0.82 0.74 0.68 0.67 0.74 0.76 
 θ = 0.50 0.51 0.51 0.66 0.56 0.53 0.51 0.59 0.61 
 θ = 0.75 0.34 0.34 0.46 0.37 0.36 0.35 0.42 0.43 
  θ = 1.00 0.20 0.20 0.25 0.20 0.22 0.21 0.24 0.26  
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Figure 1.  Design of Simulated Data 
 
Figure 2.  Illustration of Direct Versus Indirect Linking 
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